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Main innovation

The ACI Algorithm

Experiments

Problem setting

In this paper, we aim to identify the causal effects of each 
variable Xi (covariates) on the response variable Y 
(target/outcome/reward) in Pearl’s causal framework.

• Begin from Essential graph obtained by observational data.

Experimental process:

• Part 1: Graph Decomposition.

• Part 2: Structure Inference.

• Part 3: Intervention Variable Selection.

• By:
Discovering related causal relations by introducing 
interventions (causal discovery with both observational 
and interventional data) and estimate the causal effects by 
back-door (adjustment) criterion.

• Basic assumptions:

Causal sufficiency + Faithfulness.
• Input:

• Main difference between ours and previous methods:

In real tasks, it is hard to observe full variables under 
intervention. We consider such a setting, that only 
response variable is observed under intervention. 

• Goal:

observational data of full variables (X and Y).

• Mission:
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• How to use the interventional data:

• An active intervention strategy to identify causal effects:
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• Identifiability

Select a set as the graph
• Step 1:

• Step 2:
Select the variable 
with the maximum 

sibling in the set

• Goal:
➢ At least one ancestor edges can be identified;
➢ Discover more undirected edges.

➢ Causal discovery in each chain 
component is independent;

➢ Ignore the chain component 
which has no directed path to 
Y in the chain graph.
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criterion reversely
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Under the interventional-faithfulness assumption, the 
ancestor causal structure is identifiable, which leads to the 
identifiability of the causal effect of each variable on Y.

• Intervention times analysis

1. Orient undirect edges of 
the intervened variable ;

2. Find Minimal parental 
back-door admissible set
for each oriented graph 
and classify them by the 
set;

3. Estimate the causal 
effects on Y in each class 
and compare them to 
interventional data of Y.  

Theoretical analysis

Simulation

Ratio of Inter. times Ours Eberhardt (2007)
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