

Cost-effectively Identifying Causal Effects When Only Response Variable is Observable Xi-Zhu Wu Sheng-Jun Huang **Tian-Zuo Wang** Zhi-Hua Zhou National Key Lab for Novel Software Technology, Nanjing University, China

Problem setting

• Goal:

In this paper, we aim to identify the **causal effects** of each variable X_i (covariates) on the **response variable** Y (target/outcome/reward) in Pearl's causal framework.

Basic assumptions:

Causal sufficiency + Faithfulness.

• Input:

observational data of full variables (X and Y). • **By**:

Discovering related **causal relations** by introducing **interventions** (causal discovery with both observational and interventional data) and estimate the causal effects by back-door (adjustment) criterion.

Main difference between ours and previous methods:

In real tasks, it is hard to observe full variables under intervention. We consider such a setting, that **only response variable** is observed under intervention.

Mission:

Main innovation

How to use the interventional data:

Example			Use inter. data	Intervene on X ₁	
Causal graph	X_{2} \downarrow^{Y} $Y \leftarrow X_{1}$	Previous methods (He & Geng 2008, Hauser & Bühlmann 2014, Kocaoglu et al. 2017)	Whether distribution changes	X_{2} X_{1}^{2} $Y \leftarrow X_{1}$	
Essential graph	X_{2} X_{1}^{2} X_{1}^{2}	Our methods	How distribution changes	X_{2} \downarrow $Y \leftarrow X_{1}$	
• An active intervention strategy to identify causal effects:					

{wangtz, wuxz, zhouzh}@lamda.nju.edu.cn huangsj@nuaa.edu.cn

The ACI Algorithm

Begin from Essential graph obtained by observational data. **Part 1: Graph Decomposition.** Chain component 1 PC alg. Chain component 2 Chain graph Truth causal graph **Part 2: Structure Inference.** Back-door criterion Causal effect Causal graph Out method 3. **Part 3: Intervention Variable Selection.** ntervene on X₁ Goal: > At least one ancestor edges can be identified; \rightarrow > Discover more undirected edges. ′ ← _ _ _ _ • Step 1: Select a set as the graph— • Step 2: $Y \in C$ Select the variable with the maximum sibling in the set

Learning And Mining from DatA

http://www.lamda.nju.edu.cn

ancestor causal structure is identifiable, which leads to the identifiability of the causal effect of each variable on Y.

ter. times	Ours	Eberhardt (2007)	
st position	2/3	2/3	
m position	5/6	1/3	

identified ancestor edges as the intervention times grow

Personal web

Email: wangtz@lamda.nju.edu.cn, wangtz1994@gmail.com